Problem Statement
Takahashi and Aoki are going to together construct a sequence of integers.
First, Takahashi will provide a sequence of integers a, satisfying all of the following conditions:
- The length of a is N.
- Each element in a is an integer between 1 and K, inclusive.
- a is a palindrome, that is, reversing the order of elements in a will result in the same sequence as the original.
Then, Aoki will perform the following operation an arbitrary number of times:
- Move the first element in a to the end of a.
How many sequences a can be obtained after this procedure, modulo 109+7?
Constraints
- 1≤N≤109
- 1≤K≤109
Input
The input is given from Standard Input in the following format:
N K
Output
Print the number of the sequences a that can be obtained after the procedure, modulo 109+7.
Sample Input 1
Copy
4 2
Sample Output 1
Copy
6
The following six sequences can be obtained:
- (1,1,1,1)
- (1,1,2,2)
- (1,2,2,1)
- (2,2,1,1)
- (2,1,1,2)
- (2,2,2,2)
Sample Input 2
Copy
1 10
Sample Output 2
Copy
10
Sample Input 3
Copy
6 3
Sample Output 3
Copy
75
Sample Input 4
Copy
1000000000 1000000000
Sample Output 4
Copy
875699961
用1-k填序列,序列可以左移n次变为回文
不考虑移位总共有k^(n/2)个回文,所以就是一个容斥问题了
若回文串的最小循环节长度为c,经过c次操作后,得到c个序列
当c为偶数时,重复数为一半,奇数时,无重复所以这个问题就解决了,其循环节只可能是其因子
#includeusing namespace std;const int N=2010,MD=1e9+7;int v[N],f[N];int Pow(int x,int y){ int ans=1; for(;y;x=x*1LL*x%MD,y>>=1)if(y&1)ans=1LL*ans*x%MD; return ans;}int main(){ int n,k,tot=0,ans=0,i; cin>>n>>k; for(i=1; i*i